SCS 139 Applied Physic II

Practice Questions for "Magnetic Forces and Fields (II)"

1. [HRW, 9E, P29.45] Each of the eight conductors in Figure 1 carries 2.0 A of current into or out of the page. Two paths are indicated for the line integral $\oint \vec{B} \cdot d \vec{s}$. What is the value of the integral for (a) path 1 and (b) path 2?

Figure 1: [HRW, 9E, Fig. 29-68]
Ans: (a) $-2.5 \mu T \cdot m$ (b) 0
2. [HRW, 9E, P29.50] A solenoid that is 95.0 cm long has a radius of 2.00 cm and a winding of 1200 turns; it carries a current of 3.60 A. Calculate the magnitude of the magnetic field inside the solenoid.
Ans: 5.7 mT
3. [HRW, 9E, P29.51] A 200-turn solenoid having a length of 25 cm and a diameter of 10 cm carries a current of 0.29 A . Calculate the magnitude of the magnetic field \vec{B} inside the solenoid.
Ans: $2.9 \times 10^{-4} \mathrm{~T}$

Practice Questions for "Induction and Inductance"

4. [HRW, 9E, P30.7] In Figure 2: [HRW, 9E, Fig. 30-36], the magnetic flux through the loop increases according to the relation $\Phi_{B}=6.0 t^{2}+7.0 t$, where Φ_{B} is in milliwebers and t is in seconds. (a) What is the magnitude of the emf induced in the loop when $t=2.0 \mathrm{~s}$? (b) Is the direction of the current through R to the right or left?

Figure 2: [HRW, 9E, Fig. 30-36]
Ans: (a) 31 mV (b) to the left
5. A conducting loop with area $0.15 \mathrm{~m}^{2}$ and resistance 6.0Ω lies in the $x-y$ plane. A patially uniform magnetic field points in the +z direction. The field varies with time according to $B_{z}(t)=a t^{2}-b$ where $a=2.0 \mathrm{~T} / \mathrm{s}^{2}$ and $b=8.0 \mathrm{~T}$. Find the magnitude of the loop current (a) when $t=3.0 \mathrm{~s}$ and (b) when $B_{z}=0 \mathrm{~T}$.
Ans: (a) 0.3 A (b) 0.2 A
6. The magnetic field inside a 20 cm diameter solenoid is increasing at the rate of $2.4 \mathrm{~T} / \mathrm{s}$. How many turns should a coil wrapped around the outside of the solenoid have in order that the emf induced in the coil is 15 V .
Ans: 199 turns
7. A circular wire loop 40 cm in diameter has 100Ω resistance and lies ina horizontal plane. A uniform magnetic field points vertically downward, and in 25 ms , it increases linearly from 5 mT to 55 mT . Find the magnetic flux through the loop at (a) the beginning and (b) the end of the 25 ms period. (s) What is the loop current during this time?
Ans: (a) $6.28 \times 10^{-4} \mathrm{~Wb}$ (b) 0.0069 Wb (c) 2.5 mA

Additional Questions for "Magnetic Forces and Fields (II)"

8. [HRW, 9E, P29.58a] Figure 3a shows a length of wire carrying a current i and bent into a circular coil of one turn. In Figure $3 b$ the same length of wire has been bent to give a coil of two turns, each of half the original radius. (a) If B_{a} and B_{b} are the magnitudes of the magnetic fields at the centers of the two coils, what is the ratio B_{b} / B_{a} ?

Figure 3: [HRW, 9E, Fig. 29-72]
Ans: 4
9. [HRW, 9E, P29.56] Figure 4 shows an arrangement known as a Helmholtz coil. It consists of two circular coaxial coils, each of 200 turns and radius $R=25.0 \mathrm{~cm}$, separated by a distance s $=R$. The two coils carry equal currents $i=12.2 \mathrm{~mA}$ in the same direction. Find the magnitude of the net magnetic field at P, midway between the coils.

Figure 4: [HRW, 9E, Fig. 29-71]
Ans: $8.78 \mu \mathrm{~T}$

